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Families of Completely Positive Mappings 
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The implementation and dilation of families of completely positive mappings 
on a ,-algebra are considered. 

1. INTRODUCTION 

Let ~ be a ,-algebra with an identity I and let r be a state on (~. We 
may think of ~ as an "observable" algebra in which the Hermitian 
elements represent observables of a quantum mechanical system and ,0 
represents an expectation functional. Unlike the C ,-algebra framework, 
the observables in ~ can be unbounded. The present framework has 
certain advantages over that of a C *-algebra since the unbounded observ- 
ables can be treated directly instead of artificially truncating them or 
taking only bounded functions of them. The ,-algebra approach is also 
closely associated with studies in quantum field theory (Borchers, 1962, 
1967; Gudder, 1979a). Moreover, there is a widely growing literature on 
,-algebras showing that their structure is almost as rich as that of a C 
,-algebra (Gudder and Hudson, 1978; Inove, 1976, 1977; Lassner, 1972; 
Lassner and Lassner, 1977; Lassner and Timmermann, 1976; Powers, 
1974; Schmiidgen, 1976). 

A classical result (Emch, 1976; Powers, 1971) states that a continuous 
~o-invariant representation of a topological group G on the automorphism 
group of a C *-algebra is implemented by a unitary representation of G on 
the GNS space. In Section 4 we generalize this result to a ,-algebra C. In 
Section 3 we prove that a family of ~0-completely positive maps on ~ can 
be implemented by a family of linear operators and a *-representation. We 
also prove that certain families of ~0-completely positive maps can be 
dilated to a semigroup of linear operators. In Section 2 we give the basic 
definitions and some examples. 
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2. D E F I N I T I O N S  AND EXAMPLES 

A map T: ~ - - - ~  is co-completely positive if T is linear and 

r(A%)Bj] >0 
i , j = l  

for any A 1 . . . .  ,A,,, B 1 , . . . , B , ~ ,  n E N .  For  example, if T: (~---~ is a 
�9 -homomorphism, then T is co-completely positive for any state co. Indeed, 
then T is linear and 

Z col B,.* r(A:Aj)B ] = .Z co[ B: r(A ) 
t,J t,J 

A family T s, s E S, of o~-completely positive maps on ~ is unital if Ts(I) = I 
for all s E S. Let S be a semigroup with a unit e. If  T, is w-completely 
positive for every s E S  and satisfies (1) Te=l, (2) T~,= T ,T  t for every 
s, t E S, then T~ is called a semigroup of co-completely positive maps. 

For  the case S =  R § = (s  ~ R: s/> 0}, one-parameter  semigroups of 
completely positive maps are used to describe the possibly irreversible 
dynamics of open quantum mechanical  systems (Evans and Lewis, 1977; 
Kossakowski, 1972; Lindblad, 1976). In a similar way, one-parameter  
groups ott, t E R, of automorphisms on ~ describe the reversible dynamics 
of closed quantum mechanical  systems. Moreover, a symmetry group for a 
physical system is given by a representation a: G---)aut(~) of a group G 
into the automorphism group aut(d~) of ~ .  Of course, if Ts E a u t ( ~ ) ,  then 
T, is unital. 

One can also impose continuity conditions on T, using various topolo- 
gies. Since we are mainly concerned with the algebraic structure of the 
f ramework here, we shall not consider continuity conditions in Section 3. 
(In Section 4 we shall impose a continuity requirement for symraetry 
groups.) 

We now give an example in which a family of co-completely positive 
maps is constructed. In order to avoid certain technicalities we shall 
assume in the rest of this section that ~ is a C *-algebra and ~0 is a faithful 
state on ~.  This example can be generalized to a . -algebra with an 
arbitrary state. Let H,o be the Hilbert  space completion of ~ relative to the 
inner product ( A , B ) =  co(B'A), and let S be a nonempty  set. Suppose we 
have a . -representat ion ~r of d~ on a Hilbert space % and a collection of 
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bounded linear operators V,: H,~--, %, s ~ S, satisfying (i) V* ~r(A)V~I ~ 6~ 
for all s ~ S ,  A @ ~ ;  (ii) [V*Tr(A)VJ]B= V*qr(A)V~B for all s ~ S ,  A, 
B E ~ .  If we define T~: 0~---~ by T~(A)= V*~r(A)VsI, then T~,sES, is a 
family of ~o-completely positive maps on ~.  Indeed, T~ is clearly linear for 
all s ~ S, and 

E ,o[ BY T,(A*Aj)Bj] = ~. co[ B* V*or(A*Ay) V, By] 
t,J l,J 

= Y, r V, Bj, B, > 
i , j  

=<E v, sj, E v,8,> >0 
j i 

The family T~ is unital if and only if V~ is an isometry for all s ~ S. 
Indeed, if V~ is an isometry, then T~(I)= V*VsI=I, so T s is unital. 
Conversely, if T, is unital, then 

V~*. VsA = [ V*Tr(I) VsI]A = T~(I)A =A 

for all A ~ ~.  Since ~ is dense in Hw, we have V~* V~x = x for all x ~ H~,. 
Suppose V~ is an isometry for all s E S  and let P~: ~C--->% be the 

projection P~ -- V~ V~*. If P~ ~ ~r(~)', the commutant of Ir(~), for all s ~ S, 
then T, is a family of *-homomorphisms. Indeed, T,(A*)= T~(A)* since 

(B, T,(A)*> =o:[ T~(A)B] ---(T,(A)B,I> 

--- (V*~r(A) VsB , I )  -- (B, V*vr(A *) V,I > = (B, Ts(A *)) 

Moreover, T, is a homomorphism since 

T,( A B ) -~ V~*r A )Tr( B ) V J =  V*~z( A ) V~ V~ ~r( B ) VsI 

-- [ V*~z(A ) V j J (  V*~r( B ) V~I) -- T~(A) T,( B ) 

for all A, B E ~.  
If S is a semigroup with unit e and V s, ~r satisfy (i) and (ii') 

[V~(A)V~tI]B=V*vr[V*~r(A)VtI]VsB for all s , t~S ,  A , B ~ ;  (if) 
V*~r(A)VeI~A for all A G ~ ;  then T, defined above is a semigroup of 
o~-completely positive maps. Indeed, letting t - - e  in (ii') and applying (iii) 
~ves 

Ts(A)B -- [ V*~r(A) V~I]B = V*~'(A) V~B 
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Hence, (ii) holds and Ts is a family of w-completely positive maps. 
Property (1) follows from (iii). To show that Property (2) holds, we have by 
(ii') 

T~t(A ) = V*~r(A ) V~tI= V*Tr[ Vt*Tr(A ) Vii ] V~I 

= V*~r[ T, (A)]  V~I= Ts[ rt(A)] 

In the next section we shall prove that the converses of the above 
results essentially hold. In particular, we shall show that every family of 
~0-completely positive maps on a *-algebra has roughly the above form. 

3. I M P L E M E N T A T I O N  

Let ~ be a ,-algebra with identity I and let ~0 be a state on ~.  The 
GNS construction (Powers, 1974) provides a unique (to within unitary 
equivalence) closed *-representation ~% of ~ with domain D(~r~) in a 
Hilbert space H~ and a strongly cyclic vector x o E D(~r,~) such that o~(A)= 
(~r,~(A)xo, Xo) for all A ~ ~.  We now prove our main result. The first part 
of the proof follows Nagy (1955) closely (see also Evans and Lewis, 1977; 
Gudder, 1979b). 

Theorem 1. Let Ts,s~S, be a family of w-completely positive 
maps on ~.  

(a) There exists a Hilbert space %,0, a closed ,-representation 
O~, of ~ with domain D(O,~) C %,~ and a set of linear operators Vs: 
D(Tr~)~%,o such that ~r~,[Ts(A)]= V*Oo,(A)V~ for all s~S ,  A E~. 

(b) If T, is unital, then V s is an isometry for all s ~ S. 
(c) If Ts is a unital , -homomorphism for all s E S and P~: 

%~ ~%,~ is the projection P, = V~ V*, then P, ~O~(~)'.  Conversely, 
if P~ EO,~(~)', then A---~Tro,[T~(A)] is a ,-representation. 

Proof (a) Let F be the set of functions f:  ~---~D(cr,~) such t h a t f ( A ) = 0  
except for finitely many A E ~  and let ~-={0:  6~---~D(~r,~)}. For 0E~ 
f E F, define the sesquilinear form 

(q~,f)l = ~] (dp(A),f(_.4)) 
A ~  

For sES,  define 7~s: F--.~- by 

( T J ) ( A ) =  E ~',~[ Ts(A*B)]f(B) 
B ~  
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It is shown in Gudder Q979b) (for a similar result see Evans and Lewis, 
1977; Nagy, 1955) that T~ is positive for all s ~ S; that is, < TJ~,f)l > 0 for 
every f � 9  Define the inner product < - , . ) , ,  s E S, on T, F C_~3 by 
<T,f, T,g),--  <T,f,g)l  wheref, g E F  (it is shown in Evans and Lewis, 1977; 
Gudder, 1979b; Nagy, 1955 that this is well-defined and is positive definite 
and hence, an inner product). Let 9C,,s �9 S, be the Hilbert space comple- 
tion of 7~F relative to <. , . )~ and let 3s ,. For A � 9  and 
x �9 D(~%) define x A �9 F by xA(B ) = xSA. s. Define V~(A): D(~r,~)---->~,~ by 
[V,(A)x]t= f'~xAS,, t. Then V,(A) is a linear operator for all s � 9  A � 9  
and 

< V,(A)x, V,(B)y) = < 7~,xA, TsyB),=<TsxA,Ys>~ 

= <T,x~(B),y) = @%[ T,(B*A)] x ,y)  

Hence^~z~[T~(B*A)] -- V~(B)* V~(A) for all s �9 S, A,B �9 if:. Define p,o(A): 
@~sT,  F-~.,~ by [p,o(A)f],(B)=f,(A*B). It is clear that A~-~p,~(A) is an 
algebra homomorphism. We now show that p,~(A) leaves @ T~F invariant. 
It suffices to prove that [p,~(A)f]~(B)�9 f'~F for every f � 9  Since every 
element of F has the form g = XxgA ' and 

we see that 

(LY 'x . , ) (B)  = Y4ro~ [ Ts(B*Ai)]x i 

{r L( ( . )*A)]x :  A �9 ~ , ~  �9 D(~,~)) 

generates T~F. Hence, it suffices to prove the above for f of the form 
f~(C) = w,~[T,(C*D)]x. This follows from 

[P,o(A)f],(B)=f~(A*B)=~r,~[ Ts(B*AD) ]x 

=(T, xAo)(B)ET, F 

p,o(A*)cp,o(A)*. Again, for f defined as above and We next show that 
g �9 ~,~ we have 

<Es, [p,~(A)f]~)~ =<g,,o~(A)~[ TX(.)*D)]x), 

=<g,,=~[ T , ( ( . ) *AD]x )~=(g , . r  

= < g,.x~,,)l  = ( g A A D ) , x )  = ( [O~(A*)g] , (D) .x )  

= <[O~(A *)g],, xo ), = < [o~(A *)g],, T~m>, 

=: ~[oAA*)g]:/,), 
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Hence, Po, is a , - representat ion of ~ and has a unique extension to a 
closed *-representation (also denoted by p,~) of ~ with domain D(p,o ) C 
%~. 

For  f E ~,0, x E D(~r,~) we have 

<V,(A*) f ,x> =<f ,  V,(A)x> =<f, ,  f ,x~>, 

= <f~,x~ >~ = <f,(A),x> 

Hence, Vs(A)*f=f~(A). Defining V~ = V~(I) we have 

~r,~[ T,(A) ]x = rr,~[ T~(AI) ]x= Vs(A*)* Vs(I)x 

= [ V,(I)x],(A*) = [O,,,(A) V,(I)x]s = V*p,~(A) Vsx 

(b) If  T~ is unital, then I = ~r,o [ Ts(I)] = V* V~ so V~ is an isometry. 
(c) It  suffices to show that po,(A): V,D(~r~)--~V~D(Tr~). For  xEDOr~o ) 

we have 

[ o,~(A) v~ ]  ,(B) = ( V,~),(A *8) = (L. ~I)(A * B) ~,., 

= ~,,tq'go~[ Ts(B*A ) I x  = ~s,t~o~[ Ts(B*)] ~w[ Ts(-,zl) ] x 

=~s, tL[qr~(Ts(A))x],(B)=[ Vs~o~(Ts(A))x]t(B) 
Therefore, 

o~(A) V,x = V,~o[ T,(A)] x e V,D(~.) 

The converse is straightforward. �9 
We now show that certain families of o~-completely positive maps can 

be dilated to a semigroup of linear operators. For  a related result for 
C*-algebras see Evans (1976). A semigroup S is called a cancellation 
semigroup if st = su implies that t--- u for any s, t, u E S. 

Corollary 2. Let S be a cancellation semigroup with unit e, and let 
Ts,sES, be a family of ~0-completely positive maps satisfying 
T e = 1. Then there exists a Hilbert space ~,0 with H,o C %,o, a 
closed , -representat ion P~0 of d~ with domain D(po, ) C%~, and a 
semigroup of linear operators W~,s E S, on %~ satisfying 

~,~[ L(~) ]  = ew*p,~(A) w~lD(~,~) O.1) 
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for all s ~ S, A ~ ft, where P is the projection from ~,o onto H,~. 
Moreover, the closed span of the set {p,o(A) W sx: x ~ H,o, s ~ S ,A  

f t )  equals ~,o. 

Proof Define 9C~0, O,0, and V s as in the proof of Theorem 1. Using the 
unitary operator Ve: H~--+VeH,~C_~,,, identify H,o with VeH,~. For s E S ,  
define Ws: ~ TtF---~@ TtF as follows. I f f t =  TtxA, then (WAr)st= TstxA and 
extend by linearity. This is well defined since S is a cancellation semi- 
group. Clearly, W e = I and Wsu = W s W u for all s, u ~ S so W s is a semi- 
group. Now 

9oa(A ) TsXl( B ) = ~FsXI(A * B ) = rr ~[ Ts( B*A ) ] x 

= L x A ( 8 )  

and hence, O,o(A)7"sxl= T,x  A. For x ,y  ~D(%o) we then have 

( W*o~(A) Wsx,y ) = (o~(A) Wsx, Wy > 

= <O~(A) WsfeX,, Wsi;y,> = <o~(A)L~,, fY,>, 

= <Lx~, ~y,>s = < L~ ,y ,> ,  = < LxA (O,y > 

=<~[ L(a)]x,y> 

It follows that (3.1) holds. The rest of the proof is straightforward. �9 

4. INVARIANT SYMMETRY GROUPS 

Theorem 1 shows that a family T s of o~-completely positive maps is 
implemented by a set of linear operators V s and a closed *-representation 
O,,- An important standard result in C*-algebras shows that an oa-invariant 
symmetry group is implemented by a unitary representation (Emch, 1972; 
Nagy, 1955). In this section we prove that this latter result holds for a 
,-algebra. 

Let G be a topological group and let ct: G--+aut(ft) be a representa- 
tion of G into the automorphism group of a ,-algebra ft. For  a state 60 on 
ft we say that a is ~a-continuous if gi--+g(& a net in G) implies that 
~[Bag,(A)]--~w[B%(A)] for every A , B  Eft.. Following the notation of Sec- 
tion 3, ~r,o is the GNS representation of ~ with domain D(%o)C H,o and 
strongly cyclic vector x 0 @ D(%o). 
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Theorem 3. Let a: G-->aut(~) be an w-continuous representation 
of the topological group G and suppose w is a invariant (that is, 
w[%(A)]=w(A) for all g ~  G, A E ~ ) .  Then there exists a strongly 
continuous unitary representation U of G on H~ such that Ug: 
D(~ ~)--~ D(Tr ), Ugx o= Xo, and 

~ . [  ag(A)] = Ug~.(A)U~ (4.1) 

for all g E G, A E ~.  

Proof Define Ug[~,o(A)xo] = ~r~[ag(A)]xo, for all g ~ G, A ~ (~. This is 
well defined, since ~r,o(A)xo = 7r~(B)x o implies that 

JI~.[ .=(A)] X o - ~ . I - = ( ~ )  ] ~oH~ = H ~.1 ~=(A - 8 )  ] ~orl ~ 

= w I ~ g ( ( A  - B ) * ( A  - B)) ]  

= w[  (A - B)*(A - B)]  ---]lTr,~(A - B)xoll2 = 0 

Clearly, Ug is a linear operator from 7r,o(~)x o onto itself. Also, Ug is 
unitary since 

ug~.(~ )Xo, Ug~.( B )Xo) = ( ~~ ~g( A ) I xo, ~.I .g( B ) ] xo) 

= w [ ag(B *A) ] = o~(B *A) = (%~(A)x o, %,(B )x o ) 

Since 7r~o(~)x 0 is dense in H~, Ug has a unique unitary extension (also 
denoted by Ug) to H,o. Moreover, Ug h = Ug U h for all g, h ~ G since 

Ugh[ qr (A)x  o J = r agh(A) ]Xo= ~r,o [ ~g%(A) Ix  o 

= i=[ ~.(~,(A))]Xo= U= V~ I ~=(A)xo] 

To show that Ug is strongly continuous, suppose that gi--->g. Then 

II Ug,[ ~r,o(A)xo] - Ug[ er,o(A)xo] l[2= 2r *A) - 2Rew[  ag(A *)ag,(A) ] 

---)2w(A *A) - 2 Re w[ ag(A *)ag(A) ] = 0 

A limiting argument then shows that Ugx--~ Ugx for any x ~ H,o. 
We now show that 

UgTr,o(A ) U2 %~( B )x o = ~r~[ ag(A ) ]~r~( B )x o (4.2) 
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for all g E G, A, B E ~. Indeed 

< Ug Ti'w( A ) U;Tr w( B )xo, ~ w( C)xo> = ( ~ w( A )~ w[ olg- l( B ) ] xo, gr ~o[ olg- l( C ) ] > 

=<~o[A.._,(B)]xo, .o[ .~_,(C)]> 

= . [ .g_ , (C*)A. ._ , (B) ]= . [ .~_ , (C* .~(A)B) ]  

= ~[ C*.~(A)~] = <~o[.g(~)] ~(B)~o.-~(C)xo> 

Ug: D(~r,o)---~D(~r~), let x E D(~r~). Since x o is strongly To show that 
cyclic, there exists a net A i E (~ such that 

qr,o(A )qr,o( Ai)xo---)Tr~,(A )x (4.3) 

for every A G (~. Then ag(Ai) E ~ and 

7Tw[ OLg(Ai) I x0=  Ug[qTw(~xli)Xo]---~UgX 

Moreover, 7r,~(A)~r,o[%(Ai)]x o is Cauchy since 

1i ~o(A)~o [ .g(A,)] Xo- ~=(A)~[ ~.(A+)]x0N 

= il..,,.,,,(A)Ug[,,,,(A,)xo-,~o(Aj)Xo] it 

----II Ug~'~ [ c~g_ , ( A ) ] [  . ,~(Ai)xo-qr,. ,(Aj)xo]ll 

< tlTo[-.-,(A)][-~(A,)~o--~(.~j)~o]ti-~O 
where the second equality follows from (4.2) and the convergence to 0 
follows from (4.3). Since all of the ~r~,(A) are closed operators, it follows 
that Usx E DOr ~, ). 

Finally, (4.1) follows from (4.2), the invariance of D(~r,0 ) under Ug and 
a limiting argument. �9 

It is straightforward to show that the unitary representation Ug is 
unique up to a unitary equivalence. 
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